Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root flavonoids are related to enhanced AMF colonization of an invasive tree.

Identifieur interne : 000011 ( Main/Exploration ); précédent : 000010; suivant : 000012

Root flavonoids are related to enhanced AMF colonization of an invasive tree.

Auteurs : Yingchun Pei [République populaire de Chine] ; Evan Siemann [États-Unis] ; Baoliang Tian [République populaire de Chine] ; Jianqing Ding [République populaire de Chine]

Source :

RBID : pubmed:32071712

Abstract

Arbuscular mycorrhizal fungi (AMF) are important mutualistic microbes in soil, which have capacity to form mutualistic associations with most land plants. Arbuscular mycorrhizal fungi play an important role in plant invasions and their interactions with invasive plants have received increasing attention. However, the chemical mechanisms underlying the interactions of AMF and invasive plants are still poorly understood. In this study we aim to test whether root secondary chemicals are related to enhanced AMF colonization and rapid growth in an invasive tree. We conducted a common garden experiment in China with Chinese tallow tree (Triadica sebifera) to examine the relationships among AMF colonization and secondary metabolites in roots of plants from introduced (USA) and native (China) populations. We found that AMF colonization rate was higher in introduced populations compared to native populations. Roots of plants from introduced populations had lower levels of phenolics and tannins, but higher levels of flavonoids than those of plants from native populations. Flavonoids were positively correlated with AMF colonization, and this relationship was especially strong for introduced populations. Besides, AMF colonization was positively correlated with plant biomass suggesting that higher root flavonoids and AMF colonization may impact plant performance. This suggests that higher root flavonoids in plants from introduced populations may promote AMF spore germination and/or attract hyphae to their roots, which may subsequently increase plant growth. Overall, our results support a scenario in which invasive plants enhance their AMF association and invasion success via genetic changes in their root flavonoid metabolism. These findings advance our understanding of the mechanisms underlying plant invasion success and the evolutionary interactions between plants and AMF. Understanding such mechanisms of invasive plant success is critical for predicting and managing plant invasions in addition to providing important insights into the chemical mechanism of AMF-plant interactions.

DOI: 10.1093/aobpla/plaa002
PubMed: 32071712
PubMed Central: PMC7015461


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Root flavonoids are related to enhanced AMF colonization of an invasive tree.</title>
<author>
<name sortKey="Pei, Yingchun" sort="Pei, Yingchun" uniqKey="Pei Y" first="Yingchun" last="Pei">Yingchun Pei</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siemann, Evan" sort="Siemann, Evan" uniqKey="Siemann E" first="Evan" last="Siemann">Evan Siemann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Department, Rice University, Houston, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Department, Rice University, Houston, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Baoliang" sort="Tian, Baoliang" uniqKey="Tian B" first="Baoliang" last="Tian">Baoliang Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Jianqing" sort="Ding, Jianqing" uniqKey="Ding J" first="Jianqing" last="Ding">Jianqing Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32071712</idno>
<idno type="pmid">32071712</idno>
<idno type="doi">10.1093/aobpla/plaa002</idno>
<idno type="pmc">PMC7015461</idno>
<idno type="wicri:Area/Main/Corpus">000038</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000038</idno>
<idno type="wicri:Area/Main/Curation">000038</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000038</idno>
<idno type="wicri:Area/Main/Exploration">000038</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Root flavonoids are related to enhanced AMF colonization of an invasive tree.</title>
<author>
<name sortKey="Pei, Yingchun" sort="Pei, Yingchun" uniqKey="Pei Y" first="Yingchun" last="Pei">Yingchun Pei</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siemann, Evan" sort="Siemann, Evan" uniqKey="Siemann E" first="Evan" last="Siemann">Evan Siemann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Department, Rice University, Houston, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Department, Rice University, Houston, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Baoliang" sort="Tian, Baoliang" uniqKey="Tian B" first="Baoliang" last="Tian">Baoliang Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Jianqing" sort="Ding, Jianqing" uniqKey="Ding J" first="Jianqing" last="Ding">Jianqing Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">AoB PLANTS</title>
<idno type="ISSN">2041-2851</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal fungi (AMF) are important mutualistic microbes in soil, which have capacity to form mutualistic associations with most land plants. Arbuscular mycorrhizal fungi play an important role in plant invasions and their interactions with invasive plants have received increasing attention. However, the chemical mechanisms underlying the interactions of AMF and invasive plants are still poorly understood. In this study we aim to test whether root secondary chemicals are related to enhanced AMF colonization and rapid growth in an invasive tree. We conducted a common garden experiment in China with Chinese tallow tree (
<i>Triadica sebifera</i>
) to examine the relationships among AMF colonization and secondary metabolites in roots of plants from introduced (USA) and native (China) populations. We found that AMF colonization rate was higher in introduced populations compared to native populations. Roots of plants from introduced populations had lower levels of phenolics and tannins, but higher levels of flavonoids than those of plants from native populations. Flavonoids were positively correlated with AMF colonization, and this relationship was especially strong for introduced populations. Besides, AMF colonization was positively correlated with plant biomass suggesting that higher root flavonoids and AMF colonization may impact plant performance. This suggests that higher root flavonoids in plants from introduced populations may promote AMF spore germination and/or attract hyphae to their roots, which may subsequently increase plant growth. Overall, our results support a scenario in which invasive plants enhance their AMF association and invasion success via genetic changes in their root flavonoid metabolism. These findings advance our understanding of the mechanisms underlying plant invasion success and the evolutionary interactions between plants and AMF. Understanding such mechanisms of invasive plant success is critical for predicting and managing plant invasions in addition to providing important insights into the chemical mechanism of AMF-plant interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32071712</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2041-2851</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>AoB PLANTS</Title>
<ISOAbbreviation>AoB Plants</ISOAbbreviation>
</Journal>
<ArticleTitle>Root flavonoids are related to enhanced AMF colonization of an invasive tree.</ArticleTitle>
<Pagination>
<MedlinePgn>plaa002</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aobpla/plaa002</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal fungi (AMF) are important mutualistic microbes in soil, which have capacity to form mutualistic associations with most land plants. Arbuscular mycorrhizal fungi play an important role in plant invasions and their interactions with invasive plants have received increasing attention. However, the chemical mechanisms underlying the interactions of AMF and invasive plants are still poorly understood. In this study we aim to test whether root secondary chemicals are related to enhanced AMF colonization and rapid growth in an invasive tree. We conducted a common garden experiment in China with Chinese tallow tree (
<i>Triadica sebifera</i>
) to examine the relationships among AMF colonization and secondary metabolites in roots of plants from introduced (USA) and native (China) populations. We found that AMF colonization rate was higher in introduced populations compared to native populations. Roots of plants from introduced populations had lower levels of phenolics and tannins, but higher levels of flavonoids than those of plants from native populations. Flavonoids were positively correlated with AMF colonization, and this relationship was especially strong for introduced populations. Besides, AMF colonization was positively correlated with plant biomass suggesting that higher root flavonoids and AMF colonization may impact plant performance. This suggests that higher root flavonoids in plants from introduced populations may promote AMF spore germination and/or attract hyphae to their roots, which may subsequently increase plant growth. Overall, our results support a scenario in which invasive plants enhance their AMF association and invasion success via genetic changes in their root flavonoid metabolism. These findings advance our understanding of the mechanisms underlying plant invasion success and the evolutionary interactions between plants and AMF. Understanding such mechanisms of invasive plant success is critical for predicting and managing plant invasions in addition to providing important insights into the chemical mechanism of AMF-plant interactions.</AbstractText>
<CopyrightInformation>© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pei</LastName>
<ForeName>Yingchun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Siemann</LastName>
<ForeName>Evan</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Department, Rice University, Houston, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Baoliang</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Jianqing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Henan University, Kaifeng, Henan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>AoB Plants</MedlineTA>
<NlmUniqueID>101539425</NlmUniqueID>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N"> Biomass</Keyword>
<Keyword MajorTopicYN="N">Chinese tallow tree</Keyword>
<Keyword MajorTopicYN="N">flavonoids</Keyword>
<Keyword MajorTopicYN="N">invasive population</Keyword>
<Keyword MajorTopicYN="N">secondary metabolism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32071712</ArticleId>
<ArticleId IdType="doi">10.1093/aobpla/plaa002</ArticleId>
<ArticleId IdType="pii">plaa002</ArticleId>
<ArticleId IdType="pmc">PMC7015461</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2015 May;25(4):267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25307533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(3):445-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Jul;16(7):835-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23656527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2007 Jul 05;12(7):1290-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Nov 5;11(11):1344-1359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30292683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Nov 03;5(11):e15418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21082028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Apr;15(4):334-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12026171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2019 Jul;190(3):619-628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31197481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Invasions. 2018;20(9):2421-2437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30956539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2017 Jul 10;7(16):6482-6492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28861250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Oct;17(7):563-570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17516095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Feb 15;9:216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29497408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Jul;98(7):1128-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Nov;93(11):2343-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Jul;7(7):1424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Jul;110(2):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22451600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2017 Jan 1;574:938-946</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27665453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2000 Feb;75(1):65-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10740893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 16;9:267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29616050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2019 Dec 16;29(24):4249-4259.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31813608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Oct;170(2):373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22492170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22927963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Apr 20;8:665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28473811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2007 Jun;53(6):702-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17668030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2019 Feb 01;11(1):plz003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30792834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1954 Jul;57(3):508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13181867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2016 Dec 30;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28039113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 09;9(5):e97163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24817325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2018 Nov;28(8):703-715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30220052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Apr;36(4):351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20229215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Jun;11(6):1400-1411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28244977</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Pei, Yingchun" sort="Pei, Yingchun" uniqKey="Pei Y" first="Yingchun" last="Pei">Yingchun Pei</name>
</noRegion>
<name sortKey="Ding, Jianqing" sort="Ding, Jianqing" uniqKey="Ding J" first="Jianqing" last="Ding">Jianqing Ding</name>
<name sortKey="Ding, Jianqing" sort="Ding, Jianqing" uniqKey="Ding J" first="Jianqing" last="Ding">Jianqing Ding</name>
<name sortKey="Pei, Yingchun" sort="Pei, Yingchun" uniqKey="Pei Y" first="Yingchun" last="Pei">Yingchun Pei</name>
<name sortKey="Tian, Baoliang" sort="Tian, Baoliang" uniqKey="Tian B" first="Baoliang" last="Tian">Baoliang Tian</name>
<name sortKey="Tian, Baoliang" sort="Tian, Baoliang" uniqKey="Tian B" first="Baoliang" last="Tian">Baoliang Tian</name>
</country>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Siemann, Evan" sort="Siemann, Evan" uniqKey="Siemann E" first="Evan" last="Siemann">Evan Siemann</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32071712
   |texte=   Root flavonoids are related to enhanced AMF colonization of an invasive tree.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32071712" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020